Algebraic Properties of Program Integration

نویسنده

  • Thomas W. Reps
چکیده

The need to integrate several versions of a program into a common one arises frequently, but it is a tedious and time consuming task to merge programs by hand. The program-integration algorithm proposed by Horwitz, Prins, and Reps provides a way to create a semantics-based tool for integrating a base program with two or more variants. The integration algorithm is based on the assumption that any change in the behavior, rather than the text, of a program variant is significant and must be incorporated in the merged program. An integration system based on this algorithm will determine whether the variants incorporate interfering changes, and, if they do not, create an integrated program that includes all changes as well as all features of the base program that are preserved in all variants. To determine this information, the algorithm employs a program representation that is similar to the program dependence graphs that have been used previously in vectorizing and parallelizing compilers. This paper studies the algebraic properties of the program-integration operation, such as whether there are laws of associativity and distributivity. (For example, in this context associativity means: “If three variants of a given base are to be integrated by a pair of two-variant integrations, the same result is produced no matter which two variants are integrated first.”) To answer such questions, we reformulate the Horwitz-Prins-Reps integration algorithm as an operation in a Brouwerian algebra constructed from sets of dependence graphs. (A Brouwerian algebra is a distributive lattice with an operation a . − b characterized by a . − b c iff a b c.) In this algebra, the program-integration operation can be defined solely in terms of , , and . − . By making use of the rich set of algebraic laws that hold in Brouwerian algebras, we have established a number of the integration operation’s algebraic properties.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Theory of Program Modifications

The need to integrate several versions of a program into a common one arises frequently, but it is a tedious and time consuming task to merge programs by hand. The program-integration algorithm proposed by Horwitz, Prins, and Reps provides a way to create a semantics-based tool for integrating a base program with two or more variants. The integration algorithm is based on the assumption that an...

متن کامل

Algebraic distance in algebraic cone metric spaces and its properties

In this paper, we prove some properties of algebraic cone metric spaces and introduce the notion of algebraic distance in an algebraic cone metric space. As an application, we obtain some famous fixed point results in the framework of this algebraic distance.

متن کامل

Biorthogonal cubic Hermite spline multiwavelets on the interval for solving the fractional optimal control problems

In this paper, a new numerical method for solving fractional optimal control problems (FOCPs) is presented. The fractional derivative in the dynamic system is described in the Caputo sense. The method is based upon biorthogonal cubic Hermite spline multiwavelets approximations. The properties of biorthogonal multiwavelets are first given. The operational matrix of fractional Riemann-Lioville in...

متن کامل

Developing a model to enhance elementary teachers’ ability to foster functional thinking and algebraic reasoning in elementary students

Abstract: This study explores the process of change of grades 3 to 5 elementary teachers, who participated in a professional development program "Algebraic Thinking: Foundation of Elementary Mathematics". Algebraic thinking as a functional thinking was the centerpiece of the program. The “Concern Base Adaptation Model” (CBAM) was used as methodology. The results of the study showed the signific...

متن کامل

The Sine-Cosine Wavelet and Its Application in the Optimal Control of Nonlinear Systems with Constraint

In this paper, an optimal control of quadratic performance index with nonlinear constrained is presented. The sine-cosine wavelet operational matrix of integration and product matrix are introduced and applied to reduce nonlinear differential equations to the nonlinear algebraic equations. Then, the Newton-Raphson method is used for solving these sets of algebraic equations. To present ability ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1990